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ABSTRACT

Crowdsourcing offers a powerful new paradigm for online
work. However, real world tasks are often interdependent,
requiring a big picture view of the difference pieces involved.
Existing crowdsourcing approaches that support such tasks
— ranging from Wikipedia to flash teams — are bottlenecked
by relying on a small number of individuals to maintain the
big picture. In this paper, we explore the idea that a com-
putational system can scaffold an emerging interdependent,
big picture view entirely through the small contributions of
individuals, each of whom sees only a part of the whole. To
investigate the viability, strengths, and weaknesses of this ap-
proach we instantiate the idea in a prototype system for ac-
complishing distributed information synthesis and evaluate
its output across a variety of topics. We also contribute a set
of design patterns that may be informative for other systems
aimed at supporting big picture thinking in small pieces.
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INTRODUCTION

Crowdsourcing is a powerful mechanism for accomplishing
work online. By decomposing and distributing the cognitive
work of an individual, crowdsourcing can provide a larger
pool of resources more quickly and with lower transaction
costs than through traditional work. A common emerging
theme is that the more a task can be split, simplified, and
distributed into smaller subtasks, and the lower the cost of
accepting and completing a task, the larger the pool of work-
ers accessible who can complete it anywhere at anytime [36].
For example, microtask markets such as Amazon Mechanical
Turk (AMT) enable hundreds of thousands of workers from
across the globe to be recruited within seconds [8].
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However, much work in the real world is not amenable to
crowdsourcing because of the difficulty in decomposing tasks
into small, independent units. As noted by many researchers
[9, 38, 47, 48], decomposing tasks ranging from writing an
article to creating an animated film often results in pieces that
have complex dependencies on each other. Take for example
the goal of writing even a simple article about growing toma-
toes. At the lowest level, each sentence must be coherent and
align with the other sentences in the paragraph. At a higher
level, each paragraph within the article must fit together as
well, and sections need to have proper transition and flow.
Moving to even higher levels, the article must have an appro-
priate set of topics (e.g., appropriate soil, sunlight, watering,
pruning) that are coherent and comprehensive. Information
from different sources should be appropriately synthesized
and cited while reducing redundancies and bias. Supporting
this type of work requires having a big picture view of differ-
ent pieces at different scales and ensuring they all fit together.

Accomplishing this big picture thinking through small tasks
is challenging because it means that each person can only
have a limited view of the bigger picture. As a result, many of
the applications of crowdsourcing have been limited to simple
tasks such as image labeling where each piece can be decom-
posed and processed independently. Those approaches that
do crowdsource tasks requiring big picture thinking — such
as volunteer communities such as Wikipedia, open source
software, or paid crowd work approaches such as flash teams
[59] or Turkomatic [41] — have relied on a heavily invested
contributor such as a moderator or an experienced contributor
to maintain the big picture. For example, in Wikipedia a large
proportion of the work is done by a small group of heavily in-
vested editors [39], and the quality of an article is critically
dependent on there being a small number of core editors who
create and maintain a big picture structure for more peripheral
members to contribute effectively [35].

A reliance on a single or a small number of individuals to
maintain the big picture creates a bottleneck on the size and
complexity of task amenable to crowdsourcing, and also re-
sults in brittleness: if the person maintaining the big picture
leaves, it can cause serious problems for the group task. This
is a real problem that online production communities are fac-
ing; for example, Wikipedia has identified as a key challenge
that it is losing core editors faster than it can attract and grow
new ones [62]. As these core editors are disproportionately
responsible for not only producing content but also for cre-
ating a structure for peripheral contributions, their departure



is particularly difficult to handle. Taking a step towards en-
abling the production of complex artifacts through many con-
tributors making small contributions might thus have implica-
tions in reducing individual bottlenecks in microtask markets
and beyond.

Our main contribution in this paper is the idea that a com-
putational system can scaffold an emerging interdependent,
big picture view entirely through the small contributions of
individuals, each of whom sees only a part of the whole. To
investigate this idea we instantiate it in a working software
system to explore the viability, strengths, and weaknesses of
the approach, and evaluate the output of the system across a
variety of topics. Finally, we also contribute a set of design
patterns that may be informative for other systems aimed at
supporting big picture thinking in small packages.

Task Selection

To explore this question we set as our goal creating a
Wikipedia-like article on an arbitrary topic with no single task
paying more than $1. Creating an encyclopedia-like digest
for a target topic (such as how to fix a boiler or what to do
about retirement) is an easy to understand task that nonethe-
less involves several complex and interdependent challenges,
including determining a good structure for the article and
synthesizing information for different sources into a coher-
ent whole. As we discuss later, the $1 limit forces the sys-
tem to avoid bottlenecks where individuals are doing dispro-
portionately large amounts of work.! By doing so we aim
to further our theoretical understanding of the mechanisms
and limitations of accomplishing big picture thinking in small
pieces, which may have implications for crowdsourcing sys-
tems that aim to do complex cognitive tasks including micro-
task crowdsourcing [36], peer production communities [35],
friendsourcing [10], and selfsourcing [63].

This task may also have intrinsic utility in paving the road
for crowdsourced systems that can synthesize complex infor-
mation from a variety of sources on demand. Such systems
may be especially useful for topics not be covered by tra-
ditional online sources; examples include low frequency or
highly personalized search queries (such as looking for in-
formation on a particular medical condition given the per-
son’s context including age or other symptoms), topics whose
sources are highly unstructured and distributed (such as ad-
vice giving on discussion forums), or for information that
is inside an organization’s firewall (such as for a company’s
IT support sessions). One interesting example we found was
for automative diagnostics questions (e.g., 2003 Dodge Du-
rango has an OBD-II error code of P440. How do I fix it”),
where workers synthesized many valuable but unstructured
sources of information in car enthusiast forums into a coher-
ent digest. Compared to two commercially available expert-
generated databases we found that the system’s topics not

'One concern could be that $1 could motivate different amounts of
effort across different countries. For all tasks other than sourcing and
clipping we limited the pool of workers for our tasks to U.S. work-
ers to control for cross-country currency differences. For sourcing
and clipping workers U.S. workers spent an average of 9.72 minutes
and 6.89 minutes respectively, while non-U.S. workers spent 8.65
minutes and 8.36, which were not significantly different.

only covered the solutions but also added “long tail” solu-
tions (such as identifying that if the truck was stored in a barn
the code is often triggered by mice nesting in the undercar-
riage for heat) that were considered valuable additions by au-
tomotive experts. In the Evaluation section we compare the
system’s output to a variety of online sources ranging from
expert-generated high-traffic sources (e.g., The CDC website)
to unstructured user generated sources (e.g., car enthusiast fo-
rums).

RELATED WORK

Crowdwork Complex Cognition and Workflow

While most crowdsourcing approaches have focused on sim-
ple and/or independent tasks, there is a growing interest in
crowdsourcing tasks that tap into complex and higher-order
cognition [36]. Many of these fall into the class of decom-
posing cognitive processing in a structured way such that
many workers can contribute [2, 9, 12, 32, 38, 34, 42, 44,
45, 47]. Our work builds on this foundation by incorporat-
ing adaptive crowd workflows (e.g., TurKit, JabberWocky,
CrowdWeaver), crowd-driven task generation (e.g, Crowd-
Forge, Turkomatic), combining the outputs from decomposed
tasks to create a global understanding (e.g., Cascade, Crowd
Synthesis) and multi-stage crowd quality control process in
which crowds can both generate new versions of output as
well as vote on it (e.g., CrowdForge, Soylent, TurKit). How-
ever, we go beyond previous work in aiming to support a co-
herent big picture view while avoiding individual bottlenecks.
Doing this is significantly more challenging than the tasks
decomposed in prior research, requiring a search for structure
during the sampling process, a reliance on novices to function
with more context than they enter the task with, and a tight
interdependence between each subtask such that any failures
could negatively impact the value of the entire artifact.

Information Synthesis

Individual information synthesis is commonly associated
with the process of sensemaking. Sensemaking can be char-
acterized as the iterative process of building up a representa-
tion of an information space that is useful for achieving the
users goal [61]. Theories of sensemaking provide a frame-
work for characterizing and addressing the challenges faced
by individuals and can point out leverage points for augment-
ing the process [61, 20, 40, 65, 24, 18, 53, 58]. Generally,
models agree that sensemaking is a dynamic and iterative
process involving searching for information; filtering that in-
formation based on a user’s goals and context; inducing a
schema or structure from the information; and applying the
schema to take action (e.g., writing a report, making a pre-
sentation).

A number of systems have been developed aimed at support-
ing these stages of sensemaking for an individual user [6, 21,
22, 50, 55, 46] or a group of users working together [35, 39,
54, 56, 57, 65]. However, prior research has focused almost
exclusively on situations of integrated sensemaking in which
individuals (even in groups) are heavily engaged in the entire
sensemaking process. Instead, we aim to distribute the infor-
mation synthesis process across many different individuals,
each of whom may see only a limited view of the process.
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Tomatoes are heavy feeders since they are smaller plants that depend on the bushy growth to support
fruit production. They can benefit from some added nutrition even if you use the best soil. Cutting back
on nifrogen will ensure a big, goregous pile of fruit coming your way in no time!
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Tomatoes take up nutrients the best when the soil pH ranges from 6.2 to 6.8. They need a constant
supply of major and miner plant nutrients. Following the rates on the fertilizer label, mix a balanced
timed-release or organic fertilizer to the soil as you prepare planting holes.

o

Feeding tomatoes regularly is critical for a good yield. At the very least, you need a good liquid food that
is high in potassium.

Any tomato feed from a garden cetner should do the job. If you want take it a step further, check out
Sea Nymph's natural seaweed-based feed or BioBizz's BioGrow, which include molassess to feed the
microbes in the soil. About half way through the season, | add a 1 inch (2.5 cm) layer of worm compost
or lecal farm manure to the top of my containers. This adds extra nutriends and seil life.

Amend your plant beds with your own or purchased compost; dry, timed-release fertilizer; and most
importantly, worm castings. Add 5 cubic feet of Gardner & Bloome compost; 5 quarts of Gardner &
Bloome 4-6-3 Temato, Herb & Vegetable fertilizer; and a quart of 100% pure worm castings for every
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Producing better tomato plants is as
simple as picking the perfect soil.
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50 square feet of garden space.
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Figure 1. The final output of the Knowledge Accelerator system.

Computational approaches to parts of the information synthe-
sis process have also been investigated by many researchers.
For example, Question Answering (QA) research addresses
the methods and systems that automatically answering ques-
tions posted by human in natural language. The complex,
interactive QA (ciQA) has been introduced at TREC 2006
and 2007 in addition to factoid and list QA [19]. However,
automated QA approaches (and their crowd-based variants
[11]) focuses on answering short, factual questions instead
of the complex sensemaking processes we are interested in,
where users build up rich mental landscapes of information.
Another approach is multi-document summarization [7, 25,
49, 51], which aims to use computational techniques to ex-
tract of information from multiple texts written for the same
topic using feature based [26], cluster based [28], graph based
[23] and knowledge based methods [27]. However, such ap-
proaches have limitations in dealing with complex yet short
and sparse data that encountered on the web, and do not yet
engage in the complex synthesis humans perform, which re-
sults in the cohesive and coherent output.

SYSTEM OVERVIEW

The "Knowledge Accelerator” (KA) is a prototype system
which uses crowd workers each contributing small amounts
of effort to synthesize online information for complex and/or
open-ended questions. The Knowledge Accelerator system
starts with a given question (such as "How do I deal with
the arthritis in my knee as a 28 year old”) and crowdsources
the generation of a coherent article that synthesizes different
sources, viewpoints, and topics found online relevant to an-
swering the question.

An example of the output of the system for the target question
“”How do I get my tomato plants to produce more tomatoes?”
can be found in Figure 1. To produce this output workers find
high value sources from the web (e.g., gardening.about.com),
extract the useful and relevant clips of information from them,
cluster these clips across sources into commonly discussed
topics (e.g., feeding or pruning), and generate an article for
each topic that synthesizes the relevant clips into coherent
chunks of information while reducing redundancies (e.g., if
several sources all mention soil pH range, the article should
not include that information multiple times). Workers also
find relevant multimedia images and video to illustrate each
chunk. The system tracks the provenance of the original clips
throughout the process and uses the number and variety of the
clips for the organization of the final output. Topic sections
that were mentioned by more sources and had a larger number
of clips are featured closer to the top of the final output, while
more specialized ones are featured towards the bottom. Co-
herence is tracked across topics, in terms of both formatting
and style (See Figure 2 for the KA process overview).

Critically, the KA system accomplishes this process without
a core overseer or moderator. The aim of the system was
to probe how to accomplish a complex information synthe-
sis task entirely through relatively small contributions. We
operationalized this intention by limiting our maximum task
payment to $1 US, aimed at incentivizing a target task time of
approximately 5-10 minutes. We chose this approach because
a fixed payment amount matches the structure of many micro-
task crowdsourcing markets (e.g., versus a fixed time period
of 10 minutes). While some crowdsourcing markets (such as
UpWork or eLance) do support hourly rates and fixed time pe-
riods, the double-sided transaction (or “handshake”) costs in
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Figure 2. The process of the Knowledge Accelerator (KA), from start to finish

which employers and workers vet each other in such markets
would constitute a substantial fraction of the working time
we target, and the time scale of projects in such markets (typ-
ically measured in hours) do not match well with the time
scale of the projects we target here (i.e., minutes).

The above tasks of finding, filtering, organizing and gener-
ation can be though of as two larger steps: learning a good
structure for the article based on sampling information from
different online sources, and developing a coherent digest
given that structure. To learn a structure workers find high
quality online sources and clip information relevant for an-
swering the question from them, which are clustered into top-
ics or categories. The information for each topic is then syn-
thesized into a coherent digest through two steps: first inte-
grating information within a topic, and then enforcing con-
sistency across topics. Below we discuss the challenges in-
volved in developing the system broken out into these two
larger steps for ease of exposition, particularly focusing on
issues central to supporting big picture thinking with workers
each seeing only a small part of the whole. We then evalu-
ate the utility of the systems output versus top online sources
across a variety of topics.

Inducing Structure

How can a crowd learn a good structure for an article on an
arbitrary topic? Previous crowd approaches such as Crowd-
Forge or CrowdWeaver [38, 34] have had workers decide
on a structure up front for an article and then having other
workers search for information on each of these topics. How-
ever, while many workers might be familiar with NYC, few
will know what the subtopics should be for fixing a Playsta-
tions blinking light or for dealing with arthritis. In order to
learn an appropriate structure from the data, we first employ
crowd workers to find and filter relevant online information.
However, as this can collect more information than a single
worker could process, we introduce a hybrid crowd-machine
approach that clusters information into topics without requir-
ing any one worker to see the whole picture.

Finding Sources

To search for and filter high quality information sources rel-
evant to the target question we asked five workers to each
provide the top five sources that answer the question well.
We found these numbers to work well in practice; future
work using optimization approaches [31] could potentially set
these dynamically. To ensure high quality responses, for each
source we asked workers to report the search term they used
and provide a small text clip as “evidence” showing why the
source is helpful. This approach appeared to be successful
in encouraging workers to find high quality sources: workers
made on average 2 different queries (oo = 0.3), and their more
commonly cited sources covered more categories of the struc-
ture with fewer sources than choosing sources using stan-
dard information retrieval approaches (i.e., using the MMR
diversity-based re-ranking algorithm to reorder the sources
gathered from the crowdworkers [13]). Sources cited by at
least two workers were sent to the filtering stage.

Clip1 Clip2 Clip3 Clip4 dlip5

wikiHow
How to Unclog a Bathtub Drain

Categories

Plunger

Use a plunger. Turn on the hot water and
fill your tub with enough water to cover
the clog. Pull with the plunger about 10
times to ensure that you fully clear the

Hot Water

Hanger

look down the drain for hair. If you see
some, use your finger to pull up as much
as you can (you can wear rubber gloves if
you'd prefer not to use your bare finger).

Figure 3. Workers extract 5 different pieces of relevant information from
pages and give it a label

Filtering Information



Each source could contain a variable amount of information
relevant to the target question. Some long pages may have
very many chunks of relevant information that would exceed
the capacity of a single of our tasks, while other pages of
the same length may have only a few. To focus more effort
on potentially rich sources the system dispatches two work-
ers to each source with an additional two workers for every
two additional citations a source received. Each worker was
presented with one web page and asked to highlight and save
at least five pieces of information that would be helpful for
answering the question using an interface similar to that de-
scribed in [37] (Figure 3). To spread out worker coverage on
long pages, we showed workers sections that had been high-
lighted by previous workers and asked them to first look for
unhighlighted areas when choosing clips. This preference for
novelty and surfacing prior workers’ effort allowed us to en-
gage multiple workers for tasks with an unknown amount of
relevant information in a more efficient way than simply let-
ting loose many independent workers who would overly focus
on the beginning of the page, or having some workers start at
the beginning and others at the end [9].

Initially we had workers provide labels to categorize each
clip, which we planned to use to develop a structure for the ar-
ticle. However, the lack of context of the bigger picture made
these labels poorly suited for inducing a good structure. For
example, in Figure 4 the top box shows the category struc-
ture induced from labels generated during clipping, while the
middle and bottom boxes show the structure induced from the
subsequent clustering phase and from a gold standard devel-
oped by two independent annotators with access to all clips
and sources, respectively. Categories induced from the clip-
ping labels poorly match the gold standard, and include cate-
gories with very different abstraction levels (e.g., Use Drano
Max Gel vs tips). This motivated the development of the sub-
sequent clustering phase.

categories induced during clipping:

Boil Water, use hot water, Plunger, try a snake,
How to Remove drain stopper, bleach, Use Drano Max
Gel, baking soda, drain, tips to unclog, problem,
tools, research, internet research, ..., etc.

categories induced after clipping:
Hot Water, Plunge, Plunger, Snake
the Drain, Remove the Drain Cover,
Drain Cleaner, Remove Hair Clusters.

annotator categories:

Hot Water, Plunger, Plumbing Snake, Remove Cover,
Chemicals, Bent Wire Hanger, Call a Plumber, Shop
Vacuum.

Figure 4. Categories induced from different stages for Q1: How do 1
unclog my bathtub drain?

Clustering

Inducing categories in unstructured collections of text typ-
ically requires understanding the global context in order to
identify categories that are representative of the information
distribution and at appropriate levels of abstraction. The
problem of inducing structure without any single worker hav-
ing a full global context is a particularly challenging problem,
and although we describe a basic solution to the problem here

for reasons of space and scope, we present a more sophisti-
cated distributed approach in [5] that further generalizes the
problem to other domains.

Our approach takes advantage of the fact that many real world
datasets (including the ones we deal with here) have long-
tailed distributions, where a few categories make up the bulk
of the head of the distribution and many categories with few
instances make up the tail. The intuition behind our approach
is that first, the crowd can act as a guide to identify the large
categories in the head of the distribution, with their judg-
ments training a classifier to categorize the easy cases with
high confidence. After automated classification, the crowd
can again be used for “clean up”, covering the low-confidence
edge cases in the tail of the distribution.

In the first phase, we use workers to label a number of rep-
resentative categories and leverage those labels to identify
meaningful features for an automated classifier. To accom-
plish this, workers need to somehow obtain a sense of the
distribution of the data without having to inspect it all. There-
fore, we developed a design we call open-ended set sampling
to give workers a sense of the distribution while only observ-
ing a subset of it. Workers are presented with four random
clips as seeds, and are asked to replace them repeatedly with
another random clip until they can determine that the four
seed clips belong to meaningfully different categories. There-
fore, not only do they have to read the information present
in the initial seed clips, but they also need to sample multi-
ple times to understand what “different topics” mean for this
dataset. In doing so they are randomly shown new clips,
which means they are more likely to encounter categories
with probability matching the distribution of topics in the data
(i.e., higher probability of encountering larger categories).

After workers pick the seeds, we ask them to highlight key-
words in each of the seed clips which are used to find and
present similar clips from the full dataset, which the workers
then label as as similar or different. With the keyword high-
lights and the labels created by the workers, we use an SVM
classifier and hierarchical clustering to cluster the high confi-
dence portion of the dataset, sending the uncertain instances
to Phase 2.

In the second phase, we employ crowdworkers to clean up the
output of the classifier, by presenting them the existing clus-
ters on the left of the screen, and the remaining clips on the
right. The workers are first familiarized with the clusters by
asking them to review the clips each cluster and give it a short
description. They then categorize the remaining clips into ex-
isting clusters or create new clusters if no existing cluster is
relevant. These categorization judgments are used to refine
the hierarchical clustering model.

Developing a Coherent Article

The previous section described how to take an online topic
area and develop a big picture of its structure through only
local views. The output of this process is a set of topics and
a set of clips for each topic. In this section we describe a
set of processes which take this as input and outputs a coher-
ent Wikipedia-like article. We are interested in coherence at



two levels: within topic coherence (e.g., removing redundant
information) and between topic coherence (e.g., maintaining
consistency across sections).

Integration

Within a single topic, there may be many clips which all con-
tain substantively identical information (e.g., the ideal pH
level of soil for growing tomatoes); one goal is to reduce
this redundancy so that the final article only describes this
information once. At the same time, we posit there is value
to seeing that multiple sources all say the same thing; thus,
we would like to keep track of all the sources that mention a
particle chunk of information. Furthermore, tracking source
provenance allows drilling back to the original information
source in case it is described inaccurately or in a biased way.

To accomplish this we developed an interface to integrate
clips within a topic, with the goal of squeezing out redundant
information. One design question here was how to manage
temporal dependencies. Enforcing a sequential process be-
tween crowd workers could slow down the process as each
task would need to be fully completed before another worker
could accept it. Instead, each worker was presented with five
clips from a given subtopic and asked to integrate the infor-
mation into a shared text pad, writing the gist of the clip in
their own words and transferring the provenance of the clip
as a footnote. Missing footnotes triggered a verification check
as maintaining provenance was a critical design criteria. Ini-
tially, we just instructed individuals to cluster similar items
together and insert only the footnote for redundant informa-
tion.

However, we noticed that individuals seemed to be reluctant
to modify existing information in the pad, or they would ig-
nore information already in the pad. Workers were reluctant
to change what they perceived as another workers contribu-
tions, consistent with the social blocking found in Andre et
al. [4]. This developed into a larger challenge: How could
we get workers gain an understanding of what was in the
existing shared pad and feel comfortable modifying it? We
used a technique, which we call signal by doing that requires
individuals to read what others have already put into the in-
tegrated answer before they are allowed to make a decision
about the clip. Our final interface prompts workers to provide
specific line numbers corresponding to existing information
relevant to their clip, or to explicitly mark their clip as new
information or trash.

Compared to a version of the system without this structure,
significantly more clips were inserted into the middle of the
pad to align better to their given section (13% more, #(24) =
2.568, p < 0.05) or excluded (11% more, 1(24) = 4.592,
p < 0.01) when workers were asked to evaluate before acting.

Editing

Another challenge with coherence is maintaining consistency
across topics. We encountered inconsistencies throughout the
development process, ranging from formatting to structuring
to prose. For example, some topics would be organized with
bullet points versus others in a paragraph form. and some in
the second person point of view versus others in the third per-

Topic 1 Topic 2
Version 1 New Edited Version
BIA
Version 2
NN DB

/ / — e (1]

71

Figure 5. First, a worker votes on their favorite option from the previous
round. Then they edit the option chosen, which will be voted on by the
next set of workers

son. Previous crowdsourcing approaches have trouble deal-
ing with cross-topic consistency because reading even a sin-
gle topic can take significant time, let alone reading and edit-
ing across all topics. For example, one of the use cases of
CrowdForge [38] is writing encyclopedic articles, but its ap-
proach simply concatenates topics into an article without any
attempt at maintaining global coherence. This approach can
succeed if the topics and structure are extremely well speci-
fied beforehand: in CrowdForge and CrowdWeaver defining
a science article template with clear sections such as what
is the problem, what the researchers did, etc. accomplishes
this effectively in a similar manner to core editors specify-
ing a structure in Wikipedia that peripheral members then fill
in [35]. However, in the general case such well-defined and
pre-specified templates are not always available.

Therefore, we had two challenges: ensuring a consistent for-
mat between sections, and creating a global article flow from
topic to topic. Editing was divided up into two phases to
tackle these problems separately: an initial editing phase
where an individual revises the output from the synthesis task
(primarily to reduce redundancy), and a subsequent consis-
tency phase where individuals are tasked with making the
output coherent with other subtopics. In each stage, three dif-
ferent individuals produce an edited version of the subtopic.
Before beginning their edits, workers first vote on the output
from the previous round in order to pick the final version of a
subtopic, or to choose the edited version they will be improv-
ing. This workflow, which we call vote-then-edit (Figure 5),
forces workers to read through another topic, and have a sense
for its style, grammatical choices, and organization. Addi-
tionally, we expected individuals would more carefully select
the best version to reduce their future workload, as well as be
more motivated to fix issues in it because they had a choice
in what they wanted to do. We compared the evaluation rat-
ings for the older editing to the newer editing using this ap-
proach for two questions, the bathtub question and the tomato
question (Q1 and Q2 in Table 1 respectively) . The newer
answers were found to be significantly more understandable
(x = 0457, p < 0.01) and helpful (x = 0.373, p < 0.05),
suggesting this design pattern helped to create more coherent
output.

Multimedia



Images and video can both help the reader skim & digest in-
formation quickly, as well as provide robust information that
text alone cannot such as diagrams, instructions, and how-to
examples. In our system we enable multimedia from diverse
sources to be tied to information blocks, which we define as
sections of text demarcated by footnotes. Information blocks
loosely correspond to units of information, such as steps in
a how-to, or statements or evidence. This has the benefit of
ensuring that the images found are specific to pieces of infor-
mation found in the answer, rather than just being general to
the subtopic. For the version of KA described here we did
not employ redundancy or voting in the multimedia stage as
we did not encounter quality issues; however, since multime-
dia enrichment is not a particularly interdependent task ex-
isting known quality control approaches such as redundancy
and voting [36] would likely be sufficient for a production
system.

DESIGN PATTERNS

As mentioned in the above task descriptions, during our it-
erations of each stage, we ended up introducing several de-
sign patterns that improved the output. Each phase had its
own distinctive challenges, yet they still suffered from some
of the core challenges highlighted by previous work: moti-
vation, quality-control, and context [36]. Our design patterns
served to guide our final system design and add to the set of
crowd patterns introduced by previous research [38, 9, 36, 47,
12, 43, 42]. They may be particularly relevant for challenges
involving complex interdependent tasks requiring global con-
text for workers seeing only local views.

Context before Action

One of the biggest challenges in crowdsourcing a complex,
interdependent task such as information synthesis is provid-
ing workers with sufficient global context to perform well
despite them having only a local view. Previous researchers
have suggested a variety of useful patterns related to this goal,
including making the cost of spurious answers as high as
valid ones [33], identifying and surfacing specific sub-task
dependencies [41, 59], unified worker interfaces [67] and re-
representing tasks in simplified forms [3, 34]. We contribute
a set of patterns adding to this literature, specifically focus-
ing on a key tradeoff: given a limited amount of time and
effort for an individual worker, how can we provide work-
ers with global context (i.e., investing in their ability to make
better decisions) but also engage them in actual production
work? Too much invested time providing context reduces the
amount of time available for improved task performance.

Open-ended Set Sampling. One challenge with large datasets
is giving workers a sense of the distribution of the data de-
spite their observing only subsets of it. This pattern involves
a comparison task in which workers are asked to sample ran-
dom items from the data in order to create a set of non-
matching items. We saw this pattern in first part of the struc-
turing phase. A key design factor in this pattern is having a
good set function that provides a driver for open-ended sam-
pling and also a stopping point (e.g., when a worker’s famil-
iarity with the distribution gives them a sense that their four
seeds represent substantively different topics in the dataset).

Evaluate then Act. In order to get workers to understand
the context provided to them, we designed evaluation mech-
anisms at the beginning of their main task that would allow
them to get acquainted with the output from previous work-
ers. This allowed them to understand how previous workers
processed the information provided to them, improving con-
sistency of the output on parallel tasks, and reducing repeated
information. This was a particularly useful pattern, seen in
the clustering, integration, and editing phase. In the integra-
tion phase, we additionally used the evaluation phase to signal
to workers that removing others’ work was acceptable and ex-
pected, showing that it could be useful in socializing workers
into desired procedural practices as well as providing them
with context.

Tasks of Least Resistance: Leveraging Worker Choice
Since workers were mostly dealing with dense textual infor-
mation on a topic they were likely unfamiliar with, we wanted
to ensure they were sufficiently motivated. Therefore, we de-
veloped a pattern that doubled as both a quality control mea-
sure, we well as an incentive for workers. We leverage voting,
used by many other systems [9, 38], and expand on it. This
“task of least resistance” pattern requires that the same crowd
worker be involved in two stages of the task, a first stage in
which they choose what to work on from a number of alterna-
tives (e.g voting) and a second stage in which they themselves
benefit from their choice in terms of having to do less work,
easier work, or being able to submit a higher quality output.
The intuition is that to minimize their later work workers will
choose a foundation that requires the least amount of work
possible; i.e., they will choose the “task of least resistance”.
This act of choosing is intended to also provide workers with
a sense of agency and purpose, which has been shown to in-
crease task performance [15, 60]. This choice also has the
potential to increase task performance through workers trying
to avoid cognitive dissonance: since workers have themselves
presumably chosen the best quality work to start, poor qual-
ity final output could reflect on their own worth [64]. This
has a tradeoff of potentially making tasks longer, more com-
plicated, and more expensive, however the benefit is a higher
quality output.

IMPLEMENTATION

The main portion of the application was built using Ruby on
Rails and integrated with Amazon’s Mechanical Turk through
the Turkee ruby gem [29]. The Ruby on Rails application
served as the primary user interface for both the question
asker, crowd worker, as well as the answer viewer. A ques-
tion posed to the system would start the workflow, beginning
with source finding. For each stage, after a certain set of con-
ditions were met (number of sources, clips, completed clus-
tering, etc.), the next task in the workflow was automatically
started. This allowed the system to run through the entire pro-
cess with minimal intervention and supported streaming such
that multiple stages could be running in parallel.

The clipping task utilized Readability’s parser API to sim-
plify the appearance of the sources provided during the sourc-
ing phase. This allowed for turkers to view a cleaner interface
in which to clip from, and it also removed some technical



limitations involved with clipping from pages that might be
multi-paged (readability combines these into one long doc-
ument) or featured heavy javascript functionality that would
interfere with the clipper tool.

For the first phase of the structure induction tasks, the TfIdf-
Similarity ruby gem is used for searching clips similar to the
seed clips [52]. LIBSVM is used for combining the crowd
judgments and cluster a large portion of the dataset [16]. For
the integration and editing tasks, we utilized the operational
transformation Etherpad project, specifically the Etherpad-
lite offshoot of the project [1]. This allowed workers to si-
multaneously work on integrating information coming from
the option manager phase.

EVALUATION

To evaluate the usefulness and coherence of the system’s out-
put we compared it to top existing online information sources.
If an individual was to complete this task without the assis-
tance of the KA system, they most likely would use a search
engine, such as Google, to gather information and use exist-
ing information sources to learn about the topic. Therefore,
as an evaluation, we had a separate set of crowd workers per-
form a pairwise comparison of the KA output to that of the
top Google results.

Method

Participants were recruited through the AMT US-only pool
and paid $1.50 for the evaluation task. Each participant was
asked to compare two webpages. One of these webpages was
the output from the KA system, while the other was an exist-
ing website top website for a particular question. Each par-
ticipant was randomly assigned to a question and an existing
top website for that question. An individual could only pro-
vide one rating per question, but could do the rating task for
more than one question. We removed 34 of the 1385 unique
participants who provided an evaluation rating who also par-
ticipated in a KA system task.

The “top websites” used in the comparison task were the top
five Google results, as well as any additional Google results
that were highly cited (mentioned by 3 or more turkers) dur-
ing the sourcing phase of the system. Some questions had
a larger number of "highly cited sources”, resulting in more
additional websites, as can be seen in Figure 6.

In the evaluation task, participants were first asked a series of
questions that would cause them to read and understand both
sources. In order to encourage quality through defensive task
design [33], for the output from the KA system and the exist-
ing web page, they were asked to list the different sections on
each and three different keywords that would describe those
sections. After they read and parsed each web page, they
were presented with a brief persona of a friend who was hav-
ing the problem posed to the KA system. Workers were then
asked, for that problem, to rate the comprehensiveness, con-
fidence, helpfulness, trustworthiness, understandability, and
writing of each web page on a seven point Likert scale and
provide an explanation for their rating on each dimension.
We averaged ratings on these dimensions into a single scale
representing the overall perceived quality of the page.

Question N Score

Q1: How do I unclog my bathtub drain? 116 | 0.292 *

Q2: How do I get my tomato plants to pro- | 177 | 0.420 *
duce more tomatoes?

Q3: What are the best attractions in LA if | 158 | -0.044
I have two little kids?

Q4: What are the best day trips possible | 98 | -0.109
from Barcelona, Spain?

Q5: My Worcester CDi Boiler pressure is | 139 | 0.878 *
low. How can I fix it?

Q6: 2003 Dodge Durango has an OBD-II | 138 | 0.662 *
error code of P440. How do 1 fix it?

Q7: 2005 Chevy Silverado has an OBD-II | 135 | 0.412 *
error code of C0327. How do I fix it?

Q8: How do I deal with the arthritis in my | 139 | 0.391 *
knee as a 28 year old?

Q9: My Playstation 3 has a solid yellow | 119 | 0.380 *
light, how do I fix it?

Q10: What are the key arguments for and | 138 | 0.386 *

against Global Warming?

Q11: How do I use the VIM text editor? 138 | 0.180

* = significant at p < 0.01 after Bonferroni correction

Table 1. Average difference between the KA output and top websites for
the eleven questions (positive indicates higher ratings for KA, negative
indicates higher ratings for the competing website). Each rating was an
aggregate of 6 questions on a 7-point Likert scale.

We selected 11 target questions for evaluation by browsing
question and answer forums, Reddit.com, and referencing on-
line browsing habits [14]. For some questions, we added
some additional constraints to test the performance of the
system for more personalized questions. In addition to this
external evaluation, we also had the crowdworkers who par-
ticipated in the KA system fill out a short feedback form de-
tailing their experience using the system. We ask three ques-
tions about the difficulty of the task, the clarity of the instruc-
tions provided, and the easy of use of the user interface. We
recorded some brief demographics about our workers, includ-
ing to the country they were from.

Results

Aggregating across all questions, KA output was rated sig-
nificantly higher than the comparison web pages, which in-
cluded the top 5 Google results and sources cited more than
3 times (KA: X = 2.904 vs Alt. Sites: X = 2.545, #(1493) =
13.062, p < 0.001). An analysis of individual questions cor-
rected for multiple comparisons is shown in Table 1.

The strongly positive results found were surprising because
some of the websites in the comparison set were written
by experts and had well-established reputations. Only on
the two travel questions, Barcelona (¥ = —-0.109) and LA
(¥ = —0.044), and the VIM question (X = 0.180) did the KA
output not signficantly outperform the comparison pages. A
closer examination of these pages suggests that for the two
travel questions, because of the strong internet commodity
market surrounding travel, a considerable amount of effort
has been spent on curating good travel resources. Even with
the slightly more specific LA query (adding an additional
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constraint of having children), there were still two special-
ized sites dedicated to attraction for kids in LA (Mommypop-
pins.com and ScaryMommy.com). The VIM question repre-
sented a mismatch between our output and the question style.
A number of the sources for the question were tutorials, how-
ever in the clipping phase, these ordered tutorials were broken
up into unordered clips, creating an information model break-
down. This points out an interesting limitation in the KA ap-
proach, and suggests that adding support for more structured
answers (e.g., including sequential steps) could be valuable
future work.

As an additional external evaluation, for the two questions
(Q6 and Q7) related to automotive systems we compared the
discovered categories from the KA system with two commer-
cial knowledge service products commonly subscribed to in
dealer shops in the U.S. generated by expert technicians. We
compared the KA response’s accuracy and comprehensive-
ness, and found that it discovered all the categories referred
to in these two commercial products for each question. Fur-
thermore, the categories from the KA output provided more
categories not mentioned in the commercial product (aver-
age 2.5 categories from two commercial knowledge service
products, while average 9.5 categories from KA). We vali-
dated these additional categories with expert automotive pro-
fessionals who evaluated them as also being plausible and
reasonable for the given questions. There was one instance
in which two distinct categories (Encoder Motor and Encoder
Motor Sensor) from the commercial products were clustered
into the single category named Encoder Motor Assembly in
the KA output. However, the full text answer from the KA
system for Encoder Motor Assembly did still contain these
two sub-components with different repair procedures.

It may seem surprising that KA would work well for ques-
tions such as automotive error codes, where the response re-
lies heavily on technical knowledge and jargon. On further
inspection we believe this is because there are many online
resources that have valuable information pertaining to these
questions but are in unstructured and dialog oriented forms.
Workers in the sourcing phase found rich sources of online
information from many car enthusiast discussion forums, in
which members tried to diagnose and help each other solve
their automative problems. Although crowd workers may not
understand the esoteric jargon of the automative domain, their
understanding of grammar, semantics, and argument struc-
ture was sufficient to let them find, filter, cluster, integrate,
and edit this domain-specific information. These results sug-
gest a interesting avenue for future research leveraging human
understanding of semantics and argument structure to extend
crowdsourcing to process expert domain knowledge and to
understand the limits of where such an approach breaks down.

On average, running a question through the KA system cost
a total of $108.50 (see Table 2). Although our primary goal
was to establish a proof of concept of accomplish big pic-
ture thinking in small pieces, we return to the issue of cost in
the Discussion. From the self-report crowdworker feedback,
workers mostly found the tasks to be easy to complete, with
the clustering phase having the most difficult task.

DISCUSSION

Our primary goal was to investigate the opportunities and lim-
itations of accomplishing big thinking in small pieces, using
a distributed information synthesis task as a probe. We in-
stantiated our design approach in a prototype system called
the Knowledge Accelerator which crowdsourced the process
under the constraint that no single task would pay more than



Phase Task Pay Avg. # of Tasks Avg. Cost
Sourcing $0.25 15 $3.75
Clipping $0.50 21.6 $10.80
Clustering 1 $1.00 10 $10.00
Clustering 2 $1.00 10 $10.00
Integrate $0.50 37.2 $18.60
Edit 1 $0.75 28.8 $21.60
Edit 2 $1.00 28.8 $28.80
Images $0.50 9 $4.50
Total 160.4 $108.05

Table 2. Average number of worker tasks and average cost per phase,
and overall, to run a question.

$1, and investigated its performance across a variety of com-
plex information seeking questions. Results suggested that
the output of the system compared favorably to top informa-
tion sources on the web, approaching or exceeding perceived
quality ratings for even highly curated and reputable sources.

The strong performance of the system is perhaps surprising
given that its output was generated by many non-expert crowd
workers, none of whom saw the big picture of the whole. We
do not believe that this should be interpreted as a replacement
for expert creation and curation of content. Instead, the power
of the system may actually be attributable to the value created
by those experts by generating content which the crowd work-
ers could synthesize and structure into a coherent digest. This
explanation suggests that the approach would be most valu-
able where experts generate a lot of valuable information that
is unstructured and redundant, such as the automative ques-
tions in which advice from car enthusiasts was spread across
many unstructured discussion forums. In contrast, KA’s out-
put did not outperform top web sources for topics such as
travel, where there are heavy incentives for experts to gen-
erate well structured content. We believe its performance in
not being rated worse than such highly curated and reputable
expert-generated content is likely due to its aggregation of
multiple expert viewpoints rather than particularly excellent
writing or structure per se, though this is a fruitful area for
future investigation.

In developing the KA system, over several years we explored
a number of approaches that did not work. We initially tried
to avoid a clustering phase altogether by exploring variations
of the clipping task in which we provided additional context
to workers in having them read through multiple sources, en-
gage the workers who found sources in doing the clipping,
or have them build on the categories that other workers had
already generated rather than work independently. However,
in all cases workers did not generate good labels due to a lack
of context. We then explored introducing an additional “con-
ductor” view, in which workers could be recruited as clips
came in to organize those clips and close categories that had
a sufficent number of clips; however, this also failed because
the conductors did not have sufficent global context to create
good categories. These failures motivated the hybrid crowd-
machine clustering phase.

Development of the integration and editing phases also in-
cluded many false starts due to the opposite problem of giv-

ing workers foo much context. Our first integration interface
enabled multiple workers at the same time to easily view and
expand all the clips in a category for within-category context,
and also see the current state of how other categories were
developing for between-category context. Our idea was that
as workers integrated clips and built out more options expo-
sure to the other clips and options in real time would help
them create more coherent digests. However, this approach
— which we developed through iterative prototyping in small
research groups — proved overwhelming for scaling up to a
large number of crowd workers engaged for short time peri-
ods. This motivated us to split up within-category and across-
category consistency into the integration and editing phases
and the development of the vote-edit pattern.

We encountered a number of places where our approach
could be improved. As evidenced in the VIM question, the
lack of support for nuanced structure in our digests can prove
problematic. For some sources such as tutorials or how-tos,
supporting sequential dependencies between steps could be
useful. While our output was able to support such depen-
dencies in an ad-hoc way within a category (such as the se-
quential steps for plunging a drain) it would be profitable to
be able to support sequential dependencies across categories
(e.g., first try x, then try y). More structure could also be
beneficial for particular domain areas, such as explicitly cap-
turing symptoms and causes as different types for automotive
or medical diagnostic questions.

The system could also benefit from including iteration. For
example, after workers completed the integration phase they
were asked the question “What else needs to be done to make
this a complete answer?”. While many obviously said the sec-
tion needed be edited, one of the most popular responses was
“Needs more information.” or “Needs more advanced infor-
mation.” This suggested to us that while our clips and cate-
gories had pulled in most of the information, there was more
information in some sections we were missing. One possi-
bility is to introduce an iterative component at this point — as
workers are integrating information into the pad and notice
missing information, they can request for other workers to
go out and find that additional information through clipping.
Another possibility is to introduce iteration earlier during the
clustering phase. Individuals could pose questions or missing
content areas when reviewing the clusters, prompting a sec-
ond round of sourcing and filtering for a more refined ques-
tion. Thus while the system was partially successful at taking
a breadth-oriented approach rather than the deeply iterative
approach typical of sensemaking [20, 22, 58, 61], understand-
ing how to best incorporate iteration would be a valuable area
for future work.

A final area for future improvement is the cost associated with
producing answers. Our digests took approximately $100 to
produce. While intended as a proof-of-concept prototype and
similar in scale to other such crowdsourcing systems [3, 17],
it is interesting to consider what could be done to move the
approach towards a useful production system with lowered
costs. One area of improvement is optimization: by dynami-
cally deciding how many workers and products to use in each



stage final costs could be dropped significantly (e.g., as in
[30]). Furthermore, for many practical information seeking
purposes the categories and associated clips may be sufficent,
which would obviate the need for the expensive stages of in-
tegration and editing and reduce costs by over 65%.

Perhaps the most interesting possibility is if answers could
be reused across questions. Although users have complex
information seeking needs, many of the queries they issue
are similar. For example, a recent study estimated that 3%
of search queries account for 13 of total search volume [66].
Thus at a minimum, many answers could be amortized across
users with the same question. A particularly promising but
challenging opportunity is if similar questions may be able to
reuse components of already summarized answers; for exam-
ple, a question on investing advice for a 50 year old might
use some common categories as for a 20 year old, but oth-
ers would be unique to the new question’s context. Chal-
lenges for the reuse of information are how the system would
be able to identify the similarity for possible answers during
each information synthesis phase and what level of granular-
ity should be considered to for an effective system. Spatial

and temporal reasoning over the existing knowledge and new
information could be considered to provide context-aware
and up-to-date answers.

We hope the design choices embodied in the KA prototype
system and the design patterns discussed here may be use-
ful for other system designers aiming to accomplish complex
cognitive tasks without the bottleneck of requiring an indi-
vidual having the full global context of the system. Some do-
mains that might benefit from this include microtask markets,
which could benefit from supporting more complex tasks;
volunteer crowdsourcing efforts such as Wikipedia [35] or
friendsourcing in which many small contributions are read-
ily available [10]; or self-sourcing in which the crowd within
could accomplish complex tasks in small increments (e.g.,
waiting for the bus) without needing to load the entire task
context into working memory [63]. Overall, we believe this
approach represents a step towards a future of big thinking in
small packages, in which complex and interdependent cogni-
tive processes can be scaled beyond individual cognitive lim-
itations by distributing them across many individuals.



REFERENCES

1.

2.

10.

11.

12.

2015. Etherpad Lite.
https://github.com/ether/etherpad-lite. (2015).
Salman Ahmad, Alexis Battle, Zahan Malkani, and
Sepander Kamvar. 2011. The jabberwocky
programming environment for structured social
computing. In Proceedings of the 24th annual ACM
symposium on User interface software and technology.
ACM, 53-64.

. Paul André, Aniket Kittur, and Steven P Dow. 2014a.

Crowd synthesis: Extracting categories and clusters
from complex data. In Proceedings of the 17th ACM
conference on Computer supported cooperative work &
social computing. ACM, 989-998.

. Paul André, Robert E Kraut, and Aniket Kittur. 2014b.

Effects of simultaneous and sequential work structures
on distributed collaborative interdependent tasks. In
Proceedings of the 32nd annual ACM conference on
Human factors in computing systems. ACM, 139-148.

. Anonymised. 2016. Alloy: Clustering with Crowds and

Computation. In submission to CHI (2016).

. Michelle Q Wang Baldonado and Terry Winograd. 1997.

SenseMaker: an information-exploration interface
supporting the contextual evolution of a user’s interests.
In Proceedings of the ACM SIGCHI Conference on
Human factors in computing systems. ACM, 11-18.

. Regina Barzilay, Kathleen R McKeown, and Michael

Elhadad. 1999. Information fusion in the context of
multi-document summarization. In Proceedings of the
37th annual meeting of the Association for
Computational Linguistics on Computational
Linguistics. Association for Computational Linguistics,
550-557.

. Michael S. Bernstein, Joel Brandt, Robert C. Miller, and

David R. Karger. 2011. Crowds in Two Seconds:
Enabling Realtime Crowd-powered Interfaces. In
Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology (UIST ’11).
ACM, New York, NY, USA, 33-42. DOT:
http://dx.doi.org/10.1145/2047196.2047201

. Michael S Bernstein, Greg Little, Robert C Miller, Bjorn

Hartmann, Mark S Ackerman, David R Karger, David
Crowell, and Katrina Panovich. 2010a. Soylent: a word
processor with a crowd inside. In Proceedings of the
23nd annual ACM symposium on User interface
software and technology. ACM, 313-322.

Michael S Bernstein, Desney Tan, Greg Smith, Mary
Czerwinski, and Eric Horvitz. 2010b. Personalization
via friendsourcing. ACM Transactions on
Computer-Human Interaction (TOCHI) 17, 2 (2010), 6.
Michael S Bernstein, Jaime Teevan, Susan Dumais,
Daniel Liebling, and Eric Horvitz. 2012. Direct answers
for search queries in the long tail. In Proceedings of the
SIGCHI conference on human factors in computing
systems. ACM, 237-246.

Jeffrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg
Little, Andrew Miller, Robert C Miller, Robin Miller,
Aubrey Tatarowicz, Brandyn White, Samual White, and
others. 2010. VizWiz: nearly real-time answers to visual

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

questions. In Proceedings of the 23nd annual ACM
symposium on User interface software and technology.
ACM, 333-342.

Jaime Carbonell and Jade Goldstein. 1998. The use of
MMR, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of
the 21st annual international ACM SIGIR conference on
Research and development in information retrieval.
ACM, 335-336.

Pew Research Center. 2015. Generational differences in
online activities. Report. (25 July 2015).
http://www.pewinternet.org/2009/01/28/
generational-differences-in-online-activities/
Dana Chandler and Adam Kapelner. 2013. Breaking
monotony with meaning: Motivation in crowdsourcing
markets. Journal of Economic Behavior & Organization
90 (2013), 123-133.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a
library for support vector machines. ACM Transactions
on Intelligent Systems and Technology (TIST) 2, 3
(2011), 27.

Lydia B. Chilton, Greg Little, Darren Edge, Daniel S.
Weld, and James A. Landay. 2013. Cascade:
Crowdsourcing Taxonomy Creation. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’13). ACM, New York, NY,
USA, 1999-2008. DOT :
http://dx.doi.org/10.1145/2470654.2466265
Richard L Daft and Karl E Weick. 1984. Toward a
model of organizations as interpretation systems.
Academy of management review 9, 2 (1984), 284-295.
Hoa Trang Dang, Diane Kelly, and Jimmy J Lin. 2007.
Overview of the TREC 2007 Question Answering
Track.. In TREC, Vol. 7. 63.

Brenda Dervin. 1983. An overview of sense-making
research: Concepts, methods, and results to date. The
Author.

Brenda Dervin. 1992. From the minds eye of the user:
The sense-making qualitative-quantitative methodology.
Qualitative research in information management 9
(1992), 61-84.

Brenda Dervin. 1998. Sense-making theory and
practice: an overview of user interests in knowledge
seeking and use. Journal of knowledge management 2, 2
(1998), 36-46.

Giines Erkan and Dragomir R Radev. 2004. LexRank:
graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research (2004), 457-479.

Dennis A Gioia and Kumar Chittipeddi. 1991.
Sensemaking and sensegiving in strategic change
initiation. Strategic management journal 12, 6 (1991),
433-448.

Jade Goldstein, Vibhu Mittal, Jaime Carbonell, and
Mark Kantrowitz. 2000. Multi-document summarization
by sentence extraction. In Proceedings of the 2000
NAACL-ANLPWorkshop on Automatic
summarization-Volume 4. Association for
Computational Linguistics, 40—48.


https://github.com/ether/etherpad-lite
http://dx.doi.org/10.1145/2047196.2047201
http://www.pewinternet.org/2009/01/28/generational-differences-in-online-activities/
http://www.pewinternet.org/2009/01/28/generational-differences-in-online-activities/
http://dx.doi.org/10.1145/2470654.2466265

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Vishal Gupta and Gurpreet Singh Lehal. 2010. A survey
of text summarization extractive techniques. Journal of
Emerging Technologies in Web Intelligence 2, 3 (2010),
258-268.

Udo Hahn and Ulrich Reimer. 1999. Knowledge-based
text summarization: Salience and generalization
operators for knowledge base abstraction. Advances in
Automatic Text Summarization (1999), 215-232.

Anil K Jain, M Narasimha Murty, and Patrick J Flynn.
1999. Data clustering: a review. ACM computing surveys
(CSUR) 31, 3 (1999), 264-323.

Jim Jones. 2013. Turkee Ruby Gem.
https://github.com/aantix/turkee. (2013).

Ece Kamar, Severin Hacker, and Eric Horvitz. 2012.
Combining Human and Machine Intelligence in
Large-scale Crowdsourcing. In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems - Volume 1 (AAMAS ’12).
International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 467-474. http:
//dl.acm.org/citation.cfm?id=2343576.2343643
Ece Kamar and Eric Horvitz. 2013. Light at the End of
the Tunnel: A Monte Carlo Approach to Computing
Value of Information. In Proceedings of the 2013
International Conference on Autonomous Agents and
Multi-agent Systems (AAMAS ’13). International
Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, 571-578. http:
//dl.acm.org/citation.cfm?id=2484920.2485011
Juho Kim, Phu Tran Nguyen, Sarah Weir, Philip J Guo,
Robert C Miller, and Krzysztof Z Gajos. 2014.
Crowdsourcing step-by-step information extraction to
enhance existing how-to videos. In Proceedings of the
32nd annual ACM conference on Human factors in
computing systems. ACM, 4017-4026.

Aniket Kittur, Ed H Chi, and Bongwon Suh. 2008.
Crowdsourcing user studies with Mechanical Turk. In
Proceedings of the SIGCHI conference on human
factors in computing systems. ACM, 453-456.

Aniket Kittur, Susheel Khamkar, Paul André, and
Robert Kraut. 2012. CrowdWeaver: Visually Managing
Complex Crowd Work. In Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work
(CSCW ’12). ACM, New York, NY, USA, 1033-1036.
DOI :http://dx.doi.org/10.1145/2145204.2145357
Aniket Kittur and Robert E Kraut. 2008. Harnessing the
wisdom of crowds in wikipedia: quality through
coordination. In Proceedings of the 2008 ACM
conference on Computer supported cooperative work.
ACM, 37-46.

Aniket Kittur, Jeffrey V Nickerson, Michael Bernstein,
Elizabeth Gerber, Aaron Shaw, John Zimmerman, Matt
Lease, and John Horton. 2013a. The future of crowd
work. In Proceedings of the 2013 conference on
Computer supported cooperative work. ACM,
1301-1318.

Aniket Kittur, Andrew M Peters, Abdigani Diriye,
Trupti Telang, and Michael R Bove. 2013b. Costs and
benefits of structured information foraging. In

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2989-2998.
Aniket Kittur, Boris Smus, Susheel Khamkar, and
Robert E Kraut. 2011. Crowdforge: Crowdsourcing
complex work. In Proceedings of the 24th annual ACM
symposium on User interface software and technology.
ACM, 43-52.

Aniket Kittur, Bongwon Suh, Bryan A Pendleton, and
Ed H Chi. 2007. He says, she says: conflict and
coordination in Wikipedia. In Proceedings of the
SIGCHI conference on Human factors in computing
systems. ACM, 453-462.

Gary Klein, Brian Moon, and Robert R Hoffman. 2006.
Making sense of sensemaking 2: A macrocognitive
model. Intelligent Systems, IEEE 21, 5 (2006), 88-92.
Anand Kulkarni, Matthew Can, and Bjorn Hartmann.
2012. Collaboratively crowdsourcing workflows with
turkomatic. In Proceedings of the ACM 2012 conference
on Computer Supported Cooperative Work. ACM,
1003-1012.

Anand P Kulkarni, Matthew Can, and Bjoern Hartmann.
2011. Turkomatic: automatic recursive task and
workflow design for mechanical turk. In CHI’11
Extended Abstracts on Human Factors in Computing
Systems. ACM, 2053-2058.

Walter Lasecki, Christopher Miller, Adam Sadilek,
Andrew Abumoussa, Donato Borrello, Raja
Kushalnagar, and Jeffrey Bigham. 2012. Real-time
captioning by groups of non-experts. In Proceedings of
the 25th annual ACM symposium on User interface
software and technology. ACM, 23-34.

Walter S Lasecki, Christopher D Miller, and Jeffrey P
Bigham. 2013a. Warping time for more effective
real-time crowdsourcing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 2033-2036.

Walter S Lasecki, Christopher D Miller, Raja
Kushalnagar, and Jeffrey P Bigham. 2013b. Legion
scribe: real-time captioning by the non-experts. In
Proceedings of the 10th International
Cross-Disciplinary Conference on Web Accessibility.
ACM, 22.

Edith Law and Haoqi Zhang. 2011. Towards Large-Scale
Collaborative Planning: Answering High-Level Search
Queries Using Human Computation.. In AAAI

Greg Little, Lydia B Chilton, Max Goldman, and
Robert C Miller. 2010. Turkit: human computation
algorithms on mechanical turk. In Proceedings of the
23nd annual ACM symposium on User interface
software and technology. ACM, 57-66.

Kurt Luther, Casey Fiesler, and Amy Bruckman. 2013.
Redistributing Leadership in Online Creative
Collaboration. In Proceedings of the 2013 Conference
on Computer Supported Cooperative Work (CSCW ’13).
ACM, New York, NY, USA, 1007-1022. DOT :
http://dx.doi.org/10.1145/2441776.2441891
Inderjeet Mani and Eric Bloedorn. 1997.
Multi-document summarization by graph search and
matching. arXiv preprint cmp-1g/9712004 (1997).


https://github.com/aantix/turkee
http://dl.acm.org/citation.cfm?id=2343576.2343643
http://dl.acm.org/citation.cfm?id=2343576.2343643
http://dl.acm.org/citation.cfm?id=2484920.2485011
http://dl.acm.org/citation.cfm?id=2484920.2485011
http://dx.doi.org/10.1145/2145204.2145357
http://dx.doi.org/10.1145/2441776.2441891

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Gary Marchionini. 2006. Exploratory Search: From
Finding to Understanding. Commun. ACM 49, 4 (April
2006), 41-46. DOTI :
http://dx.doi.org/10.1145/1121949.1121979
Kathleen McKeown, Judith Klavans, Vasileios
Hatzivassiloglou, Regina Barzilay, and Eleazar Eskin.
1999. Towards multidocument summarization by
reformulation: Progress and prospects. In AAAI/IAAL
453-460.

James McKinney. 2015. TfldfSimilarity Ruby Gem.
https:
//github.com/jpmckinney/tf-idf-similarity.
(2015).

Frances J Milliken. 1990. Perceiving and interpreting
environmental change: An examination of college
administrators’ interpretation of changing
demographics. Academy of management Journal 33, 1
(1990), 42-63.

Meredith Ringel Morris, Jarrod Lombardo, and Daniel
Wigdor. 2010. WeSearch: supporting collaborative
search and sensemaking on a tabletop display. In
Proceedings of the 2010 ACM conference on Computer
supported cooperative work. ACM, 401-410.

Aditya Parameswaran, Ming Han Teh, Hector
Garcia-Molina, and Jennifer Widom. 2013. Datasift: An
expressive and accurate crowd-powered search toolkit.
In First AAAI Conference on Human Computation and
Crowdsourcing.

Sharoda A Paul and Meredith Ringel Morris. 2009.
CoSense: enhancing sensemaking for collaborative web
search. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM,
1771-1780.

Sharoda A Paul and Madhu C Reddy. 2010.
Understanding together: sensemaking in collaborative
information seeking. In Proceedings of the 2010 ACM
conference on Computer supported cooperative work.
ACM, 321-330.

Peter Pirolli and Stuart Card. 1999. Information
foraging. Psychological review 106, 4 (1999), 643.
Daniela Retelny, Sébastien Robaszkiewicz, Alexandra
To, Walter S Lasecki, Jay Patel, Negar Rahmati, Tulsee

60.

61.

62.

63.

64.

65.

66.

67.

Doshi, Melissa Valentine, and Michael S Bernstein.
2014. Expert crowdsourcing with flash teams. In
Proceedings of the 27th annual ACM symposium on
User interface software and technology. ACM, 75-85.
Jakob Rogstadius, Vassilis Kostakos, Aniket Kittur,
Boris Smus, Jim Laredo, and Maja Vukovic. 2011. An
Assessment of Intrinsic and Extrinsic Motivation on
Task Performance in Crowdsourcing Markets.. In
ICWSM.

Daniel M. Russell, Mark J. Stefik, Peter Pirolli, and
Stuart K. Card. 1993. The Cost Structure of
Sensemaking. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing
Systems (CHI "93). ACM, New York, NY, USA,
269-276.DOTI:
http://dx.doi.org/10.1145/169059.169209
Bongwon Suh, Gregorio Convertino, Ed H Chi, and
Peter Pirolli. 2009. The singularity is not near: slowing
growth of Wikipedia. In Proceedings of the 5th
International Symposium on Wikis and Open
Collaboration. ACM, 8.

Jaime Teevan, Daniel J Liebling, and Walter S Lasecki.
2014. Selfsourcing personal tasks. In CHI’14 Extended
Abstracts on Human Factors in Computing Systems.
ACM, 2527-2532.

Karl E Weick. 1964. Reduction of cognitive dissonance
through task enhancement and effort expenditure. The
Journal of Abnormal and Social Psychology 68, 5
(1964), 533.

Karl E. Weick. 1995. Sensemaking in organizations.
Vol. 3. Sage.

Ryen W White, Mikhail Bilenko, and Silviu Cucerzan.
2007. Studying the use of popular destinations to
enhance web search interaction. In Proceedings of the
30th annual international ACM SIGIR conference on
Research and development in information retrieval.
ACM, 159-166.

Haoqi Zhang, Edith Law, Rob Miller, Krzysztof Gajos,
David Parkes, and Eric Horvitz. 2012. Human
computation tasks with global constraints. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 217-226.


http://dx.doi.org/10.1145/1121949.1121979
https://github.com/jpmckinney/tf-idf-similarity
https://github.com/jpmckinney/tf-idf-similarity
http://dx.doi.org/10.1145/169059.169209

	Introduction
	Task Selection

	Related Work
	Crowdwork Complex Cognition and Workflow
	Information Synthesis

	System Overview
	Inducing Structure
	Finding Sources
	Filtering Information
	Clustering

	Developing a Coherent Article
	Integration
	Editing
	Multimedia


	Design Patterns
	Context before Action
	Tasks of Least Resistance: Leveraging Worker Choice

	Implementation
	Evaluation
	Method
	Results

	Discussion
	REFERENCES 

